denote the width and height of cach red rectangle. Also denote by L the length of the
initial squarc. We claim that cither holds:

iai > L or Zd, > L.
i=1 j=1

Indeed, suppose that there exists a horizontal line across the square that is covered entirely
with blue rectangles. Then, the total width of these rectangles is at least L, and the claim
is proven. Otherwise, there is a red rectangle intersecting every horizontal one, and hence

) PO T, |

bllb l/Ul!dﬂl llngllL UJ. LIICSC [CCLallglics lb at ]L(L::L .L/

Now, WLOG we can assume that 1 ; a; > L. Applying Cauchy’s inequality to vectors

- (D)

\y VL y vz
and
U= (\/(albl-, Vagbo, ey anbn> s
> b—f) (zb) > ($a) =2
i=1 ¢ i=1 i=1
n a 3
Since we know that= Zaibi = , then Z b— > 7" Moreover, each ¢; < L, so

i=1
m m m
d-j dej 1 1
2o, ettty

Adding up the preceding, yields

11 2
Equality holds when S = 5 It can be achieved by making the top 3 of the square a

1
blue rectangle, and the remaining 3 bottom rectangle red.

5630: Proposed by Arkady Alt, San Jose, CA

Find the integer part of the minimal value of &k + %, ke N.

Solution 1 by Michel Bataille, Rouen, France

Let i denote the minimal value of & + % when k € N.
If n =0, we clearly have || =p =1.

Let f, be the function defined on (0, 00) by f,(x) == + n
T
If n < 0, f, is increasing on (0, oc), hence p =1+ % =n+1land |p] =|n+1].

From now on, we suppose that n > 0 and for simplicity, we set m = |[\/n]. Note that
m2<n<(m+1)2=m?+2m+1

12



We prove that |u] =2m if n <m? +m and [u| =2m+1if n>m? +m.

The function f,, is decreasing on (0, /n) and increasing on [y/n, o0), hence the minimum
of f,, on (ﬂ mo\ is f( /_\ — 9‘/,_ It immediately follows that p = T‘nm! F('m\ f(m —l—'l\l

Now, f(m + 1) — f(m) = m+ 1+ mLH —m — % =1- % and thercfore

p=fm)ifn<m(m+1)and p = f(m+1) if n > m(m +1). In the former case,

we have m < — < m + 1, hence 2m < u :m+£ < 2m + 1 and so [u] = 2m. In
m m

the latter case, (m +1)? >n>m(m+ 1) and p= f(m+1) =m+1+ mi 1 satisfies

Solution 2 by Albert Stadler, Herrlierg, Switzerland

We denote by [z the integer part of x and claim that the integer part of the minimal
valuc of k + n/k,k € N, cquals cither [2/n] or [24/n] + 1, and it cquals [24/n] + 1 if and
only if there is a natural number m such that n = m(m + 1).

The function @ — = + n/x is decreasing for @ < /n and increasing for @ > /n. The
minimum at /7 equals 2v/n.

Thercfore
. n . T mn
Zﬁgmln(kj+7):mln([\/ﬁ r /_-1? \/_]+1+r /71.1\‘
kEN \ K/ [V V] +1/
The inequality
[Vn] + 1+ < 2[vn] +

[\/_ | +1
is equivalent to \/n < [y/n| + 1 which is true. So

2vn) < [mm (k‘+ k)} <2[va] +1.

Clearly, 2[/n] + 1 — [2¢/n] € {0,1}. So the integer part of iﬂl% (lc + %) equals either
eN ;
[2y/n] or [24/n] 4+ 1. It remains to investigate for which n we have

[zﬁ]+1—min(\/_+[ } [\/_]+1+[ (*)

vl [\f]+1D

Clearly, if n = m(m + 1) above cquation holds truc, since [/n] = m, the right-hand side
equals 2m + 1 and the left-hand side equals

2
[2\/ﬁ]+1=2m+1+[2\/m(m+1)—2m]=2m+1+{ T }=2m+1
m(m+1)+m
<1

as well. It remains to prove that if (*) holds true then n = m(m + 1) for some natural
numbcer m.

Let m = [y/n], » =n — m? Then 0 <r < 2m , and

13



2m + 2, m+1<r<2m

[2/n)+1 = [2vm2 + 741 = 2m1+(2 (Vi £ —m)| = {2m+1, 0<r<m

n 2 4 2m 0<r<m-—-1
[\/rﬂl{—}nu[ }le{—} 2m + 1, m<r<2m-—1
vn 2m +2 r=2m
_+1|' n 7_ JrlJrI'sz,r'ﬂ_2 Jr|'7"J,r1_-|_f 2€m 0<r<m-—1
W “ﬁ“‘ﬂim LerlJi " {erlJ*iQm—i-lj m<r<2m
This shows that (*) can only hold true for » = m which implies that n = m? +m =

2[/m), VA2 < n < [val (Lval +1)
2Vl 1, VAl (vl + D) <n< (vl + 1)

where |¢] is the greatest integer not exceeding ¢

n
For real 2, the convex function x + — attains its minimal value when z = /n.
x

n
Hence the minimal value of &+ —, k € N equals

k
n 9
m+ —, m-<n<m(m+1)
) 7 7 m
min{m+—,m-+1+ =
m m+1
m—+1+

T

T mm+1)<n<(m+1)>%

Hence our claim.

Solution 4 by Eagle Problem Solvers, Georgia Southern University, States-
boro, GA and Savannah, GA

The integer part of the minimal value of £ + 7.k € N is given by

n+1] ifn<—1

7+ 1] if —l<n<l

2[/n] it 1 <n<|val®+ V]
2|yn) +1 ifn>1and > |Va)*+ VA

Consider the function f(x) = 2+ 2. where x is a positive real number. Then its derivative
1 (:z:) = 1 — -3 is positive for all z € N if n < 1, in which case the minimum value of
k+ 7 is 1+ n. Recall that if n +1 < 0, then the integer part of n+ 1 is [n + 1]. On the
other hand. if n is a positive real number, then f'(z) < 0 for 0 < z < \/n and f'(z) > 0

for @ > \/n, so that f(v/n) = 2y/n is the minimum value of f(z) over the continuous

14



interval (0,00). If n = a®, where @ € N, then the minimum valuc of k + 7, where k€ N,
is f(a) = 2v/n = 2a, which is an integer. If n > 1 and n is not a perfect squarce, then the
minimum value of k + 7, where k € IV, is either

n
or o o n o n
f(vn]) = |vn|+ Mol [vn] + 1+ WOES
If n > 1, notice that |/nn] < v/, so that |y/7]” < n and L\;%J > | /i), so that
SV = [Vl + o 2 2 Vi)
In addition, (|v72] + 1) ([vr] — 1) = [va)? =1 < n—1 < n, so that L\/F;]H > i -1,
and

FUVAD = [VA) L s [V VA = 1= 2| v

Since /i1 < |7 + 1, then n < (/7] +1)* and W%‘H < |vn] +1so

f(i—vﬁj\):[\//ﬁ‘+l+7n <2|Vn|+2
V] +1 '
Thus, for n > 1, the integer part of the minimum value of f(k) = k + % is either 2 |/n]

or 2 |v/n] + 1. We consider two cases, depending on whether n < L\/ﬁjz + |v/n]. First,
notice that

Al = il - T o |ya| + Ryl
and
n ‘ (lyn] +1)>—n
H(val) = W] +1+ —o= = 2(lvn] + ) - =5 —
Casel:n<[-\/ﬁj2+L\/ﬁJ.Thenﬁ<L\/ﬁj+1a11d
n
f(L'\/ﬁj):L\/ﬁJ+W<2|_\/ﬁJ+l-

In addition,

(VA +1)" =0 = [va]* + [Vi] =0+ [Va] +1> [Va] +1,

so that

FvAl) =2 (Vi) +1) - (V[’\J/%fl‘” <2(|vn] 1) —1—2|va] + L.

Thus, in Case 1, the integer part of the minimal value of f(k) is 2 |/n].
Case 2: n. > [vn)® + [v7n]. Then

2
FLvD =2 Vi) + P o v

15



In addition,
(WVn) + 1) =n = [va]* + [Va] = n+ [Va] +1< |[va) +1,

so that

n 2—71
FvaD =2 (i) 1 1) - =R s vy 12 lva) L

Thus, in Case 2, the integer part of the minimal value of f(k) is 2 |v/n] + 1.

Solution 5 by Brian D. Beasley, Presbyterian College, Clinton, SC

For each real number n, we define f(n) = [min{k 4+ n/k : k € N}| and note that [ is a
non-decreasing function on R. If n < 1, then the minimum value of k +n/k for k € N
occurs when k=1, s0 f(n) = |1 +n]. If n > 1, then there is a unique positive integer m
with either
m?<n<m(m+1) or m(m+1)<n< (m+1)%

We observe that f increases by 1 only at each n = m? and at each n = m(m + 1): Let
e € (0,1). Then f(m?) = 2m, while f(m? —€) = 2m — 1 by taking k = m. Similarly,
f(m(m+1)) = 2m+1, while f(m(m+1)—¢) = 2m by taking k = m or k = m+1. Hence
we conclude that if m? < n < m(m+1), then f(n) = 2m, while if m(m+1) < n < (m+1)?,
then f(n) =2m + 1.

Addenda Tt 1g in
[Z0 §

1 efaim
AGAETGUT

t > SULTEE \/Vllb I i
unless n = m(m + 1), in which casc f ( )= LQf J

Solution 6 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

For an integer n, let M(n) = [min {k + T—;, ke NH

where [.] is the greatest integer function. We shall see that

n+1, ifn<0;
M(n) = ¢ [2v/n] + 1,if n > 1 has the form m(m + 1);

[2y/n], otherwise
Note that in the second case, M (n) = M (m? + m) = 2m+1.

n
By calculus, we know that the function f,(k) = k+ e with k considcred as a continuous

(positive) variable, achieves an absolute minimum of 24/n at the sole critical point y/n.

Ml . R an i cdan 1. Jand nmnn wro laa +hhn T iirnts 11 Tam Alagns 44 O fon aan A T3
l Ilub WIIEIl We TEStr lL,-L o bU LIILEECL vVal LLC'D l,vllb' MIinimum wii De Close 10 < V ¢ alltl LIS
restricted minimum must occur near /n. That is, it must occur at k = [\/n| or at

k=[vn]+1.
Let us validate our claim. For n <0, f,(1) = 1 + n while f,(k) = k+ % for k> 1.
Thus the minimal value is the integer n + 1, which therefore is M (n).

Now suppose that n is positive and trapped between given consecutive squares: m? <
n<(m+1)°.
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Thus, m < n<m+1, so m=[y/n].

2

In the nice case where n is a square, m* = n, then choosing k to be n yields the calculus-

predicted absolute minimum: f,(m)=m+ % =2m = 2y/n = [2¢/n] = M(n).

In the special case n = m(m + 1) = m? + m, we find more nice behavior. The two
candidates for the occurrence of the minimum are at k£ = [/n| or k£ = [\/n] + 1. But these
are just m and m + 1, and

m(m + 1)

1
Falm) ——m+T—2m+1,andfn(m+1)_m+1+m

=2m+1.
+1

Therefore M(n) = 2m + 1, which is [2y/n] + 1.

Finally, consider the case that m? < n < (m +1)? and n # m(m + 1).

We still have m < y/n < m + 1, so m = [\/n]. The two candidates for the location of our
minimum value: at & =m or kK = m + 1. Some algebra shows that

fn(m):m+%<fn(m+1):m+1+mL+l <~ n<m(m+1).

So the location of n in the interval (m?, (m + 1)?) determines the appropriate choice for
k. But for each choice, the minimum value turns out to be [2/n].

We present the (ticky) details verifying that the first choice behaves as claimed: n <
n

m(m + 1) using k = m, so that f,(k) =m + —.
m

n n
Because m? < n < m(m + 1), we have m < — < m + 1, so {—} =m.
m m

Therefore [fy, (k)] = [n + %} =m+m=2m = M(n).

Moreover, [2y/n| = 2m also. This is true because (1) 2m < 2y/n; and if we had 2m +1 <
2\/n , we would conclude by squaring that 4m? + 4m + 1 < 4n < 4m? + 4m, which is a
contradiction by our choice for n.

Therefore, M(n) = 2m = [24/n].

The argument for & = m + 1 is similar.

The proof of our formula for M(n) is complete.

Comment (by authors): This interesting problem has connections to three classic
problems.

(1) The ancient Babylonian method for computing the square root of n: make a guess ,k.
Compute n/k, then average the result with &, producing a better approximation to the
desired root. Repeat as long as you want to the method converges to n.

(2) But of course, this method turns out to be Newton’s method applied to the function
flw) =z —n
(3) The favorite Calculus I example, done in class to help the students see the power of

n
calculus and understand graphs: “What doces the graph of f(z) =« + — look like?
x

We have two terms competing; for positive & close to zero, the — term dominates and the

T
graph climbs to infinity; for big positive x, the z term wins and the graph also climbs to
infinity. f(z) is continuous and always positive, so the graph must “min out” somewhere.
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